

PARALLEL PLANNING IN PARTITIONED PROBLEM SPACES

Stephen Balakirsky*
Otthein Herzog†

*National Institute of Standards and Technology, Gaithersburg MD
†TZI – Center for Computing Technologies, University of Bremen, Bremen Germany

Abstract: This paper presents a complete and optimal framework for extending basic
graph planning to operate in partitioned problem spaces. These spaces typically occur in
systems that implement a hierarchy or contain data of various resolutions. An algorithm
for the framework will be presented along with a proof of optimality. Finally, an example
implementation for mobile robot path planning will be discussed.

Keywords: planning; parallel algorithms; autonomous mobile robots; graph theory;
architectures

1 INTRODUCTION

There are many examples of problem decomposition
into distinct planning regions in the current literature.
One common occurrence of regions is in the creation
of a planning space hierarchy. Fernández and
González [2,3] have presented a world view that has
been decomposed into the hierarchical graph model.
In the graph model, high-resolution nodes are
abstracted to form a smaller number of lower
resolution super nodes. Each super node is then
connected to form a planning graph and planning is
performed on this low-resolution representation of
the space. Fernández and González present a
technique for connecting and searching these graph
structures, which may contain any number of
hierarchical levels, that is based on the classic
refinement method. However, the authors state that
this technique is not guaranteed to find the cost
optimal path ([3], p. 106).

Another view of hierarchical planning is presented
by Lacaze [4] for mobile robot applications. In this
paper, the planning space is viewed as having a high
node density near the robot with decreasing density
as the distance to the robot increases. Forming
regions of equal node count as shown in Figure 1
creates the hierarchy. A region of high node density
exists around the robot’s current location where
high-resolution sensor information is available.
Further from the robot, the sensors are only able to
detect large objects and the corresponding node
density decreases. Finally, once the limits of the
sensors have been exceeded, the node density drops
to correspond to the feature density represented in
the a priori dataset. Through this technique an
optimal plan may be computed for each individual
region. However, the final plan will be piecewise
optimal and is not guaranteed to be optimal when
taken as a whole.

R3

R1

R2

Figure 1: Example of node density for 2-D mobile

robot application based on Lacaze [4].

One of the benefits of this hierarchical
decomposition is that in time-constrained
environments a path may be quickly found through
the low-resolution graph and executed as a sub-
optimal plan. If more time is available, individual
sections of this path are expanded and a new refined
plan is constructed that is a refinement of the
previous path. Through the use of this technique, this
algorithm may act as an anytime algorithm [5].

In this paper, a new technique will be explored that
allows for the creation of an arbitrary number of
irregularly shaped and placed regions. Regions of
this form have been encountered by NIST while
developing an autonomous vehicle for on-road
driving as part of the ARL Demo 3 and DARPA
MARS programs. This technique, which builds upon
existing graph-based planning techniques, will be
shown to be applicable to multi-agent systems and
will be proven to be capable of providing the overall
optimal solution to the planning problem. The

algorithms discussed in this paper are an extension to
thesis work performed at the University of Bremen
that may be found in [1].

2 FRAMEWORK DEFINITIONS
Before the framework for planning in partitioned
problem spaces may be described in detail, certain
basic graph-planning definitions must be established.
This section will present definitions that apply
equally to traditional hierarchical planning
techniques and the partitioned planning framework.
Section 2.2 will then extend these definitions to meet
the unique needs of the partitioned problem
framework.

2.1 Graph-Based Planning Definitions
The basic planning problem may be described as the
desire to find a cost optimal sequence of transitions
for the task of transitioning from one element of a
discrete planning space S ⊆ ℕn (denoted by

start
s ∈ S) to another (denoted by

goal
s ∈ S).

A node space V that allows for the time sequencing
of the elements of S by an ordered sequence of points
T, the set of arcs A that represents a binary relation
on the space V, the graph G, and various graph
properties may now be defined.

The node space V is defined by (SxT) where S ⊆ ℕn,
T = (t1,…,tm), m ∈ℕ. An element of V is defined as
vk,i :=

it,k
s , k ∈ℕn, k∈ℕ, i∈ℕ. (D1)

An arc A is defined as a binary relation
a = (vk,i, vj,i+1). (D2)

The mapping c:A→ℂ is called the cost function of an
arc. One typical specification for ℂ is ℂ = ℜ+. (D3)

The spanning set of a node vk,i denoted by SP(vk,i)
is defined as the set of nodes that are reachable
through a single arc. Members of the spanning set are
also denoted as the successors of the node vk,i. (D4)

A graph G is defined as G = (V, A). (D5)

Given a graph G = (V, A), and nodes vk,i, vj,i+1,…,
vm,i+n ∈ V, i, j, k, n∈ℕ. A path p is defined by
p = (vk,i, vj,i+1,…,vm,i+n) such that two adjacent nodes
of p constitute an arc a∈A. P is defined as the set of
all paths p in G. The length l of p is defined as the
number of arcs of the path. (D6)

The path cost associated to a path p is defined as

∑
−

=
+++++=

1m

0j
1ji,2jji,1j))v,v(a(cpc . (D7)

The system objective of finding the cost optimal path
from

start
s ∈ S to

goal
s ∈ S may now be achieved by

finding the minimum cost path between the two
nodes vstart,i and vgoal,j.

Define the minimum cost path pmin between the nodes
vj,i and vk,i+n, n ≠ 0 and i, j, k, n ∈ ℕ, such that
∀p∈P : p = (vj,I,…,vk,i+n) : pc(pmin) ≤ pc(p). (D8)

2.2 Framework Specific Definitions
In addition to representing an element of the planning
space

it,k
s ∈ S, a node may be said to represent the

features that are present in
it,k

s . These features are

represented by attributes attached to the nodes v∈V.

Define ATT as the set of node attributes by
ATT = {att k,i | att k,i is a attribute of vk,i ∈ V}. (D9)

The set ATT defines a set of attributes that may be
identified in the given planning problem and mapped
onto a single node. An example would be: ATTk,i =
{“contains data from sensor 1”, “member of area-of-
interest 2”, “high-probability of obstacles”}.

An annotated node space Va may be defined that
combines the node space V and the set of attribute
sets ATT.

An attributed node space Va is defined as
Va:= (){ }i,ki,k

a
i,k ATT,vvV =× ATT . (D10)

Given the existence of attributes, it is possible to
define a unary relation r that partitions V according
to specific attributes. For the above example, the
relation r may define membership in a partition of Va
by requiring the existence of data from sensor 1. This
will define a closed circle of a certain radius centered
on the sensor. A region Va,r may then be defined as
the subset of Va where the relation r holds.

Given a relation r ⊆ ATT, a region Va,r ⊆ Va is
defined by {vk,i ∈ Va | R(ATTk,i) = true}. (D11)

Additionally, a set of regions that contains all of the
nodes from Va will be defined as a complete set of
regions R.

The set of n regions Va,R, R = {r1, r2,…,rn} is

complete iff U
n

i

ara i

1

,

=

= VV . (D12)

It can be shown that any node v ∈ Va is also a
member of the complete set of regions R.

Lemma: If v ∈ Va and Va,R, R = {r1, r2, …, rn } is a
complete set of regions, then v ∈ Va,R. (L1)

Proof: Assume v ∉ Va,R, then by (D12),

Va,R = U
n

1i

ai,a

=

= VV and v ∉ Va which contradicts

the original assumption.

Given the above definition of a region, it is possible
that graph nodes exist that are members of multiple
regions. These shared graph nodes form the boundary
between the regions. The boundary nodes may have

members of their spanning set that are located in the
boundary, or in either region that forms the
boundary. In order to provide transitions between
regions, the partitioned planning framework requires
that boundary nodes contain successors that are
uniquely located in each of the regions that form the
boundary. The formal requirements on the regions
for the partitioned planning approach are defined
below.

Given the set of n regions R = {r1,…,rn}, the
boundary set of any two regions c, d is defined as
Bc,d := { vk,i ∈ Va | vk,i ∈ Va,c ∧ vk,i ∈ Va,d }. (D13)

A boundary set Bc,d is called a partitioning boundary
set iff ∀ vk,i ∈ Bc,d, ∃ vm,i, vn,i ∈ SP(vk,i) : vm,i ∈ Va,c,
vm,i ∉Va,d ∧ vn,i ∈ Va,d, vn,i ∉Va,c. (D14)

A node space Va,R, R = {r1, r2, …, rn} is called a
partitioned planning space iff Va,R is complete and
Bc,d is a partitioning boundary for all
c,d ∈{1,…,n}, c ≠ d. (D15)

The spanning set of the nodes of the partitioning
boundary set may now be specialized on a regional
basis. It will be shown that the union of these
regional spanning sets is equal to the spanning set
defined in (D4).

Define the regional spanning set SPi of a node vk,i as
the set of all successor nodes
SPi (vk,t) =
{vj,t+1 | ∀j∈ℕ : vj,t+1∈spk,t ∧ri(ATTj,t+1)=true (D16)
Lemma: ∀ vk,t ∈ Va, SP(vk,t) = U

i
t,k

i)v(SP where

R = {r1, r2, …, rn} is complete. (L 2)

Proof: (D16) may be rewritten as U

i
t,k

i)v(SP =

{vj,t+1 | ∀j∈ℕ : vj,t+1∈spk,t ∧ true)ATT(r 1t,j
i

i =+U }

From (D12) and the fact that R is complete,

U
i

iSP (vk,t) = { spk,t+1| spk,t+1∈ Va}. By (D4) all

members of the spanning set are connected by an arc
and must therefore be elements of Va, and the
definition reduces to U

i

iSP (vk,t) = SP(vk,t).

3 PARTITIONED PLANNING

ALGORITHM
Figure 2 describes the planning algorithm for
operation over a partitioned planning space. A
separate version of this algorithm will be executed
for each of the partitions ri ∈ R, i = {1,2,…,n}. These
algorithms may be run serially, or may be executed
in parallel with no effect on the final complete
solution as will be shown in Theorem 1.

Step (1) of the algorithm establishes a maximum
planning cost Cmax. An error and planner termination

will result if the planner is unable to find a plan of
cost less than Cmax.

The main change to a basic graph search that is
necessary for operation over partitions is the
inclusion of the boundary nodes into the algorithm
framework. These boundary nodes are made part of
the goal set for the partition, and must be reached in
regions that do not include the goal before the
algorithm can terminate.

In order to include the boundary as part of the goal
set, step (3) forms the new goal set *

rG that includes
the systems goals as well as the boundary regions.

Step (4) selects a graph node to be opened. Any
optimal and complete graph search algorithm may be
applied here.

Planning algorithm for partitioned planning space
Va,R where R = {r1,…,rn}.
1) Initialize planning open threshold Cr to

maximum allowable plan cost Cmax (may be
∞).

2) If region contains
0t,startv , insert this into

region’s open set Or.
3) If region contains one or more goals,

gt,goalv ,

insert them into the region specific goal set Gr.
a) Form the set

*
rG = Gr ∪ Br,j, ∀j ∈ {1,…,n}.

4) Determine next node to open.
a) If Or = ∅, go to (3a).
b) Else, using the graph search technique of

your choice, select and remove a node

it,kv from Or.

5) Evaluate
it,kv .

a) If PC(
0t,startv ,

it,kv) ≥ Cr, goto (8).

b) If
it,kv ∈ *

rG , remove
it,kv from *

rG . If
*
rG = ∅, set Cr = PC(

0t,startv ,
it,kv) and

go to (8).
6) ∀

1it,mv
+

∈ SPr(
it,kv)

a) Evaluate arc(
it,kv ,

1it,mv
+

) according to

graph search algorithm and add
1it,mv

+
to

Or if necessary.
b) If

1it,mv
+

∈ Br,j, r ≠ j, ∀j∈{1,2,…,n} ∧

1it,mv
+

∈ Or, add
1it,mv

+
to Oj.

7) Go to (4).
8) Are we finished, or do we have an error?

a) If *
jG = ∅, ∀j∈{1,2, …,n} then finished!

b) Else, if Cj ≥ Cmax, ∀j∈{1,2, …,n} then no
plan found. ERROR.

c) Else, keep going. Go to (4).

Figure 2: Partitioned planning spaces algorithm.

 It should be noted that an empty open set causes an
idle cycle rather then an error. The reason for this is
that the path cost from a boundary node

it,kv ∈ Bc,d
to the start node may be changed by the search
algorithm running in either region rc or rd. If a change
is made, the node is placed on the open list of both
regions.

Step (5) of the algorithm begins the evaluation of the
selected node. Its cost and membership in the goal
set are checked. If its cost is greater than the regional
stopping threshold or it is the last member of the goal
set, then error and termination checking is performed
(see step (8)).

Step (6) continues the evaluation procedure with the
cost of achieving each member of the node’s
spanning set being evaluated. If the graph evaluation
algorithm adds the node to the regions open set, and
the node is part of a boundary, the node will also be
added to the other boundary member’s open set. This
allows cost to propagate across the boundaries and as
will be shown allows for the joint optimal solution to
be found.

In order to properly propagate this value to the
region not responsible for the value change, the
normal graph search stopping criterion must be
changed to cause repeated planning cycles to occur.
This is accomplished in step (8) of the algorithm.
The repeated cycle will quickly terminate (no nodes
other then the boundary nodes will be placed on the
open list) if no changes have occurred. However, if
boundary changes have occurred, they will propagate
through the graph.

The algorithm from Figure 2 may be applied to any
configuration of partitioned planning spaces. Two
possible configurations are shown in Figure 3, where
the left hand drawing represents a classical nested
hierarchy, and the right hand drawing represents a
space designed for parallel implementation of the
planning algorithm. A combination of the two
partitioning approaches is also possible where
regions may be defined based on information
content. For example, for a road planning system,
cities may represent independent regions where a
different planning algorithm may be run than in rural
areas. In general, these partitions may exist anywhere
in the planning space with a separate graph search
system operating on each partition. If the individual
plan constructed in each partition is optimal, then the
final plan constructed by the algorithm of Figure 2
will also be optimal. This statement will now be
formalized.

Figure 3: Sample partitioned planning spaces.

Theorem 1: Given the partitioned planning space
Va,R , R = {r1,r2,…,rn} with a independent version of
the planning algorithm from Figure 2 executing in
each region and a graph search algorithm in step (4)
of Figure 2 that is optimal and complete. Further,
given the start node

it,startv , the goal node

mt,goal i
v + , and the path p(

it,startv ,…, mt,goal i
v +)

is the final path produced. Then
)v,...,v(p)v,...,v(p mt,goalt,startminmt,goalt,start iiii ++ =

is the cost optimal path through the graph in the
space Va,R, and it is cost equivalent to the cost
optimal path through the graph in the space Va.

Proof (a): Assume

).v,...,v(p)v,...,v(p mt,goalt,startminmt,goalt,start iiii ++ ≠

Then ∃ p*(
it,startv ,…, mt,goal i

v +):

)).v,...,v(p(pc))v,...,v(p(pc mt,goalt,startmt,goalt,start
*

iiii ++ <

By (D6), ∃ node
at,kv :

at,kv ∈Va,R,

+∧∉ +))v,...,v(p(pc)v,...,vp(v
aiiia t,kt,start

*
mt,goalt,startt,k

))v,...,v(p(pc))v,...,v(p(pc mt,goalt,startmt,goalt,k
*

iiia ++ <

where
at,kv is the first node from the path

∧∈ ++)v,...,v(pV:)v,...,v(p mt,goalt,start
*

t,kmt,goalt,start
*

iiaii

).v,...,v(pv mt,goalt,starti,k ii +∉
Without loss of generality assume that .rv c1t,1k a

∈−−
Four different situations exist with respect to
boundary set membership for the nodes

at,kv and

1t,1k a
v −− .

Case 1: 1t,1k a
v −− ∉ Bc,d ∧

at,kv ∉ Bc,d.

Case 2: 1t,1k a
v −− ∈ Bc,d ∧

at,kv ∉ Bc,d.

Case 3: 1t,1k a
v −− ∉ Bc,d ∧

at,kv ∈ Bc,d.

Case 4: 1t,1k a
v −− ∈ Bc,d ∧

at,kv ∈ Bc,d.

For case 1 and case 4, both 1t,1k a

v −− ,
at,kv ∈ rc,

c ∈ {1,…,n}. In these cases, both nodes are in the
same region and a cost optimal algorithm is running
in that region. The fact that

at,kv is not included in

the final path contradicts the assumption that the
individual region’s algorithm is cost optimal.
For case 2,

at,kv ∈ rc, at,kv ∉)(SP 1,1 −− a

d
tk

r v ,

c ≠ d ∈ {1,…,n}. By (D6),
∃ arc(1t,1k a

v −− ,
at,kv), and by Lemma 2,

at,kv ∈)(SP 1,1 −− a

c
tk

r v .

Therefore either
at,kv is a member of the open set

Oc, or
at,kv has already been expanded. Given that

the path p is the final path, so all
at,kv :

.O))v,...,v(p(pc))v,...,v(p(pc cmt,goalt,startt,kt,start iiai
∉< +

This forces the conclusion that
at,kv has been

expanded. However, if
at,kv has been expanded,

then by step (6) of the algorithm from Figure 2,
pmin(it,startv ,…, mt,goal i

v +) would include this
node. This contradicts the initial assumption.

For case 3, 1t,1k a

v −− ∈ rc, at,kv ∈ rc, rd,

at,kv ∈)(SP 1,1 −− a

c
tk

r v , c ≠ d ∈ {1, …, n}. By

(D6) ∃ arc(1t,1k a
v −− ,

at,kv),
at,kv ∈

)(SP 1,1 −− a

c
tk

r v .

Therefore
at,kv is a member of Oc or has been

expanded for region rc. If at,kv is expanded in region

rc, then by step (6) of the algorithm from Figure
2,

at,kv will either be a member of Od, or pmin would

include this node. pmin including this node
contradicts the initial assumption. Therefore

at,kv ∈

Oc ⋁ Od. However, since given that algorithm path is
final path, all

at,kv :

∉< +))v,...,v(p(pc))v,...,v(p(pc mt,goalt,startt,kt,start iiai

Oc, Od. This forces the conclusion that
at,kv has

been expanded in both regions which contradicts

at,kv ∈ Oc ⋁ Od.

Proof (b):
From Lemma 1 and Lemma 2, every node and set of
arc connections that exists in Va also exists in Va,R.
Therefore all paths that exist in Va exist in Va,R, and
all paths that exist in Va,R exist in Va.

4 PLANNING EXAMPLE
Figure 4 depicts an example of a planning space that
has been decomposed into two partitions. A single
cooperative planning agent operates on each
partition. In Figure 4(a) the two striped spheres are
the start and goal locations, and the dark band
represents the boundary between the inner and outer
planning regions.

Planning begins in a single region at the start
location, and proceeds until a node is expanded
whose spanning set contains nodes that are located in
a boundary. This is shown in Figure 4(b) where the
speckled sphere is the node being expanded.

The boundary nodes will now be placed in both
region 1 and region 2’s open set. This will cause the
planning algorithm of region 2 to begin operation (it
now has a node to expand), and both planning
operations proceed in parallel.

Figure 4: Example of graph expansion.

While evaluating its spanning set (step (6) of the
algorithm from Figure 2), it is possible that the
planner operating in region 2 will find another path
to a boundary node and that this path will be cheaper
than the path that was originally found by the region
1 planning system. This is depicted in Figure 4(c)
where the specked link represents the older more
expensive connection. This will cause the more
expensive link to be removed, and the boundary node
to be inserted in both regions open sets (step (6b) of
the planning algorithm). This procedure does not
interrupt the flow of either planning system.

As shown in Figure 4(d) by the white speckled
spheres, a valid path exists once the planner
operating in the region that contains the goal opens
the goal node for evaluation. However, if all of the
regions have not finished their planning cycle, this
plan is not guaranteed to be optimal. This is seen in
Figure 4(e) where the region 1 planning system finds
a cheaper path to a boundary node and causes the
region 2 planning system to recommence planning.
The final optimal path is found when condition 8(a)
of the algorithm is satisfied and is displayed in
Figure 4(f).

5 CONCLUSIONS AND FUTURE WORK
This paper has presented a new framework for
planning in partitioned planning problem spaces.
These problem spaces may be of the classical nested
hierarchy form or of a more complex form of
partially overlapping planning spaces. This
framework was proven to provide a complete and
optimal solution assuming that a complete and
optimal graph search algorithm is utilized.

In the near future, the authors will be implementing
this framework for use in an autonomous vehicle’s
on-road planning system. This system will function
much as the planning example in Figure 4 where the
exterior region (region 2) will contain a priori data
on the basic road network and the interior region
(region 1) will contain high-resolution data on
obstacles, exact lane trajectories, etc.

The main challenge that is expected in the
implementation of this system will be the mapping of
the boundary regions and providing a mechanism for
assuring that unit cost equivalence is maintained
between the two parallel planning systems.

References

 1. Balakirsky, S., A Framework for Planning
with Incrementally Created Graphs in
Attrributed Problem Spaces, Akademische
Verlagshesellschaft Aka GmbH, Berlin,
Germany, 2003.

 2. Fernández-Madrigal, J.-A. and González, J.,
"Hierarchical Graph Search For Mobile Robot
Path Planning," Proceedings of the 1998
International Conference on Robotics and
Automation, Vol. 1, 1998, pp. 656-661.

 3. Fernández-Madrigal, J.-A. and González, J.,
"Multihierarchical Graph Search," IEEE
Transactions on Pattern Analysis and
Machine Intelligence, Vol. 24, No. 1, 2002,
pp. 103-113.

 4. Lacaze, A., "Hierarchical Planning
Algorithms," SPIE 16th Annual International
Symposium on Aerospace/Defense Sensing,
Simulation, and Controls, 2002.

 5. Zilberstein, S., "Using Anytime Algorithms in
Intelligent Systems," AI Magazine, Vol. 17,
No. 3, 2002, pp. 73-83.

